Network Models from Petri Nets with Catalysts

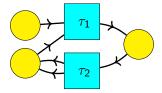
John Baez John Foley Joe Moeller*

University of California, Riverside Metron Scientific Solutions

Quantum Physics and Logic 12 June 2019

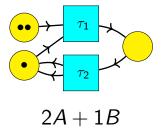
Petri Nets

Petri Nets



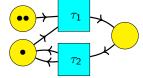
UCR

Markings

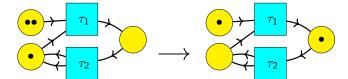


Joe Moeller

Executions

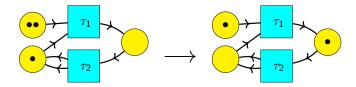


Executions



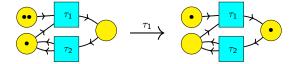
Executions

Petri Nets



$$2A + 1B \xrightarrow{\tau_1} 1A + 1C$$

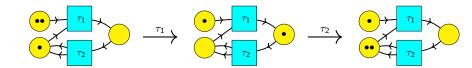
Sequential Execution



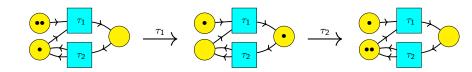
Joe Moeller UCR

Petri Nets

Sequential Execution



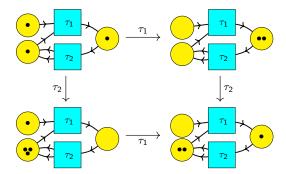
Sequential Execution



$$2A + 1B \xrightarrow{\tau_1} 1A + 1C \xrightarrow{\tau_2} 1A + 2B$$

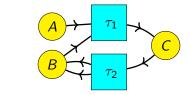
Petri Nets Catalysts Network Models Future

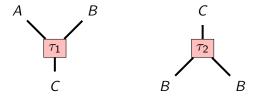
Concurrent Execution



Petri Nets Catalysts Network Models Futur

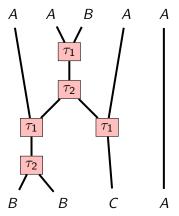
String Diagrams



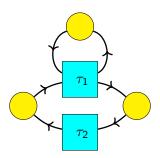


Petri Nets Catalysts Network Models Future

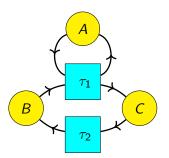
String Diagrams

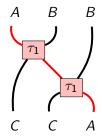


Catalysts



Catalysts

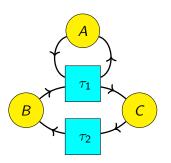




UCR

Joe Moeller

Catalysts



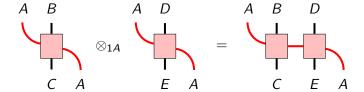
$$C$$
 A A

FP is a coproduct

$$FP = \coprod_{c \in \text{Catalysts}} FP_c$$

Not monoidal subcategories

Premonoidal Structure on Subcategories



Monoidal Grothendieck Construction

Theorem (Vasilakopoulou, M.)

If $\mathcal X$ is cocartesian monoidal, then the 2-category of categories which are fibre-wise monoidally opfibred over $\mathcal X$ is equivalent to the 2-category of categories which are globally monoidally opfibred over $\mathcal X$.

$$\mathsf{fOpFib}(\mathcal{X}) \cong \mathsf{gOpFib}(\mathcal{X})$$

FΡ

 $\mathbb{N}[C]$

Network Models

▶ FP is monoidally opfibred over $\mathbb{N}[C]$

Joe Moeller Catalysts

FP is monoidally opfibred over $\mathbb{N}[C]$ $\mathbb{N}[C]$

 inverse monoidal Grothendieck construction to get an indexed category

$$\mathbb{N}[\mathit{C}] o \mathsf{Cat}$$

FP is monoidally opfibred over $\mathbb{N}[C]$ $\mathbb{N}[C]$

 inverse monoidal Grothendieck construction to get an indexed category

$$\mathbb{N}[C] o \mathsf{Cat}$$

Let S denote the free symmetric monoidal category functor

$$S[C] \to \mathbb{N}[C]$$

FP is monoidally opfibred over $\mathbb{N}[C]$ $\mathbb{N}[C]$

 inverse monoidal Grothendieck construction to get an indexed category

$$\mathbb{N}[C] o \mathsf{Cat}$$

Let S denote the free symmetric monoidal category functor

$$S[C] \to \mathbb{N}[C]$$

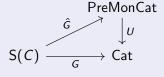
composite is a monoidal indexed category

$$S[C] \xrightarrow{i} \mathbb{N}[C] \xrightarrow{p} Cat$$

Joe Moeller UCR
Catalvsts

Theorem (Baez, Foley, M.)

The global monoidal indexed category $G: S(C) \to Cat$ lifts to a functor $\hat{G}: S(C) \to PreMonCat$:



Catalysts

monoidal functor

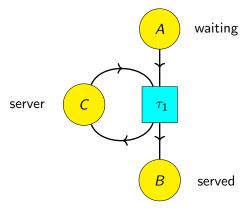
$$S[C] \xrightarrow{\hat{G}} PreMonCat$$

- monoidal Grothendieck construction gives a monoidal category
 - objects = same objects as FP, markings
 - morphisms = sequential executions + permutations of catalyst tokens
 - tensor = concurrent execution + permutation sum

this gives a variant of the category *FP* which models **individual token philosophy** on the catalyst tokens, and **collective token philosophy** on all others

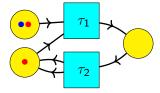
Future

applications to queueing theory



Future

- applications to queueing theory
- Petri nets with guards



Future

- applications to queueing theory
- Petri nets with guards
- model individual token philosophy by mimicking the usual theory, but over a cocartesian base

Joe Moeller Catalysts

John Baez, John Foley, and Joseph Moeller.

Network models from Petri nets with catalysts.

arXiv:1904.03550 [math.CT], 2019.

John Baez, John Foley, Joseph Moeller, and Blake Pollard. Network models.

arXiv:1711.00037 [math.CT], 2017.

John Baez and Jade Master.

Open Petri nets.

arXiv:1808.05415 [math.CT], 2018.

Joe Moeller and Christina Vasilakopoulou.

Monoidal Grothendieck construction.

arXiv:1809.00727 [math.CT], 2019.